◆名师点拨

巧复习迎高考最后冲刺

高考前的这段时间对考生究竟意味着 什么?就像长跑运动员在最后 100 米的冲 刺,谁忽视,谁就面临淘汰。高考成功已经 到了量变到质变的阶段,只有调整好情绪, 继续跑,才能到达理想的目的地。

那么,怎样做好最后的复习呢?

强化教材知识整合 熟悉答题方法

教材是考试之源,各个学科的高考实 质上是对教材的消化和延伸。因此,理应利 用课本统领我们最后阶段的复习。尤其是 对重点章节、重要原理、主要观点等教材内 容,不仅要做好每一课的梳理,还要进行跨 课的串联、整合,把握知识的内在联系,注 重基础知识、基本技能的各项要求。

同时, 考生在这一阶段的复习重点应

该是熟悉和巩固答题思路和方法,不同试 题的设问、审题、考点范围的确定是最重要 的。二期课改后高考要求有了转变,更多地 要求学生灵活运用教材知识、对教材中的 实验内容作深度挖掘, 审题时务必先弄清 楚考点的范围。目前,考题的综合性和递进 性要求逐年提高,跨学科、跨教材出题已不 鲜见, 审题时一定要看清题义, 究竟是问 "是什么",还是"为什么",抑或是"怎么 做",回答应有针对性。考生在复习时要把 握学科知识的基本结构和体系,这样才能 准确、全面地回答问题,提高答题质量。

研究历年高考真题 掌握考试技

虽然各次高考试题均有变化, 但今年 高考与以往几年高考还是有许多相似-

无论是考试范围还是考试要求。考生极有 必要认真研究近三年的高考真题, 从试题 要求到答题规范都应仔细查看,从中找出 学科高考出题的一般规律。

同时,考生也有必要掌握一些考试技 巧,虽然我不主张拼技巧,但复习还应有章 可循。一是分类复习,将自己做过的各区一 模、二模以及每门学科练习中最难把握的 题目,如政治的"不定项选择题"或"论述 题"、物理的"数形结合问题"等进行归类, 弄清其中的知识点本质。弄懂为止,不留一 个模糊点。二是平时做题,要记得提醒自 己:看清题目设问,答题仔细。做单项选择 题,切莫潦草应付;做不定项选择题,不要 太快,尽量选对所有的选项,倘若有疑问, 可在题目旁用铅笔做好记号,宁可少选,万 万不要错选。当对有些题目一时找不到方 向时,别急着下笔,做好记号,先去完成其 他容易做的部分。

规范答题思路 提高答题的准确性

任何一门学科都有自身的内在科学

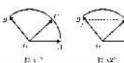
性,通过有序的文字或数字、公式、图表等 有逻辑地表达出来。近年的高考更加重视 学生这方面的表现,因此,在最后的复习 中,学生应在两个方面加强训练:一是规范 答题,以避免卷面书写问题考验阅卷者的 视觉,甚至失去应得的分数;二是文字表达 方式尽量做到表述简练、有逻辑层次、观点 鲜明、举例恰当。遇到表格题,训练中务必 做到:利用题目,反复练习——数据反映的 现象、发展趋势、造成的原因、体现的实质 和意义,掌握对数据的分析方法,尤其是对 数据现象和实质、数据与数据之间的关系 的分析和理解。理科生还要特别重视化学 实验和物理实验,做好实验题的变换和迁 移,提高思维能力和文字组织、书写能力。

编辑/黄烨

高考最后的复习注定是严谨而艰苦 的。练习不在于多,而在于懂得取舍,掌握 知识之间的内在关系。复习题目是做不完 的,关键在于真正把握解题方法。考生要将 教师的教法和自己的学法结合起来,找到 适合自己复习效率的策略,坚持努力,取得 事半功倍的效果。

●田老师教数学 -

◎本期 出场名师

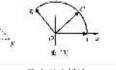

田万国,建 平中学数学高级 教师,中国数学 奥林匹克高级教 练,上海市第一 批名师培养基地 学员,浦东新区 骨干教师,合作 编写书籍 20 余 本。

向量是既有大小又有方向的量。

向量的表示方法有三种:(1)几何表示。记向量 们看到了几何图形,知道向量的起点和终点,具有 几何意义。(2)代数表示。记向量为 \bar{a} 。这里不依附 图形,任何向量都可以这样表示,具有抽象意义。 标系中,向量就可以用坐标来表示,具有数量意义。

相应于向量的三种表示方法,向量的计算也 呈现三种方式: (1)几何运算。主要借助于几何图 形,利用三角形法则、平行四边形法则、多边形法 则、解斜三角形的主要工具(正弦定理、余弦定 理)等进行计算。(2)代数运算。类似于代数多项式 的四则运算,进行向量的加法、减法、实数与向量 的乘法、数量积等运算,成为纯粹"代数式"的运算和变形,如(如5+10)、165+101—1001(一加501(+100-1+ 量用坐标表示,向量的加法、减法、实数与向量的 乘法、数量积等运算就在坐标形式下进行,成为纯

从向量的表示上就已经认识到,向量是典型 的数与形集于一身的一个量,分析有关向量的问 题,基本的角度是从其三种表示方法入手,基于三 种计算方式来研究问题,对平面向量和空间向量 都适用。下面,我们以一个典型问题来体验。



分析一(几何表示——几何运算)

的起点为A、终点为B,则向量表示为 \overline{AB} 。这里我 (3)坐标表示。建立适当的坐标系,此时向量置于坐

(3)坐标运算。将向

给定两个长度为1的平面向量 の4 和 の 10 它们 的夹角为120°,如图(1)所示,点 C在以 O为圆心 的圆弧 AB 上变动。若 OC - xC4+ FCB 其中 x,y ∈ R,求 x+y 的最大值。

如图(2)

由の、元ムナメルル、ショカサロビ ロロイルリル 唯一表示,也 可以用平行四边形法则将 0. 分上1041-08上,

\blacksquare OA \blacksquare = \blacksquare OB \blacksquare = \blacksquare OC \blacksquare =1.

 $OC = cO\hat{A} + vO\hat{B} = O\hat{E} + O\hat{F}$, |OF| = c, |OF| = p.

在△OFC中,∠OFC=60°,由余弦定理,得 $1=x^2+v^2-2xy\cos 60^0$

 $\exists \exists 1 = x^2 + y^2 - xy = (x+y)^2 - 3xy \ge (x+$

$$5(\frac{x-y}{2})^2 - \frac{1}{4}(x-y)^2$$
,则 $x+y \le 2$

当且仅当 x=y=1 时等号成立,故 x+y 的最大

另解:将*OC 5等*11**11**0411 Off - 数 200-6。 明/#00-²5-0

在
$$\triangle$$
OFC 中,由正弦定理,得,

$$\frac{x}{\sin(\frac{2}{3}x + \theta)} = \frac{1}{\sin\frac{x}{3}} + \frac{y}{\sin\theta}, \ \exists 1x = \frac{2}{\sqrt{3}}\sin(\frac{2}{3}x + \theta), \ y = \frac{2}{\sqrt{3}}\sin\theta$$
$$x + y = \frac{\pi}{\sqrt{3}}\sin(\frac{\pi}{3}x + \theta) + \frac{2}{\sqrt{3}}\sin\theta + \cos\theta + \sqrt{3}\sin\theta + 2\sin(\theta + \frac{\pi}{3}), \ 0 \le \theta \le \frac{2}{3}x$$

则,当一时 x+y 的最大值为 2。 分析二(代数表示——代数运算)

 $\overline{\partial C}^2 = (x\overline{\partial A} - y\overline{\partial B})^2 + x^2\overline{\partial A}^2 + y^2\overline{\partial B}^2 + 2xy\overline{\partial A}^2\overline{\partial B})$

 $\nabla = 0A \left[- \left[OR - \left[OC - I \right] / ROC \right] \right]$ 120°, 则 1=x²+y²-xy(以下略)。

另解: (ベースない)メルル きんのこ 6 (N°-7)å = e0å-0)å + y0%-12å , 4:sis 4 = e = \frac{1}{2} v

 $\langle \sqrt{UC} \cdot \overline{GC} - x\overline{GA} \cdot \overline{GB} + y\overline{GB} \cdot \overline{y}\overline{W}, \ (14 \cos \frac{2}{3} s + (1) - \frac{1}{3} s + y)$

所以,1-20年年的 3008-008 (3008-2008年), 020至年 则,当"时 x+y 的最大值为 2。

分析三(坐标表示——坐标运算)

如图(3)

以O为原点,OA所在直线为x轴,建立平面 直角坐标系坐标系。

 $\text{III} A(1,0), B(-\frac{1}{2}, \frac{\sqrt{3}}{2})$ is example that $\sqrt{-1}(-\frac{1}{2} \le x \le 1, 0 \le x \le 1)$

则 $1-v^{\prime}$ $v - (r - \frac{1}{2}p^{\prime}) + (\frac{\sqrt{3}}{2}v^{\prime} - x^{\prime} - r^{\prime}) v (以下略)。$ 10 .- mg.

以上三种思路最终都得到目标函数 z=x+y 的约束条件 $x^2+y^2-xy=1$,转化为二元函数的最值 问题,利用基本不等式加以解决;又因为点 C 在 圆弧上运动,可以引入 $\angle AOC = \theta$ 来描述其运动 变化,将二元函数转化为一元函数(三角函数)的 最值问题,即 *** *********** 体现了所谓"一 题多解,多解归一"

只要我们静心分析思考, 从向量的三种表示 方法人手,根据各自特点,进行相应的向量运算, 总能寻找到有关向量问题的突破口。

●高考汉语常用手册

立足"出题句

■嘉定一中语文教师 郭晋考

所谓"出题句",是指试题题 干所涉的句子。先看一道高考题: 联系上下文,填入第3段空 格处恰当的一项是(

③近年来,人们对高品质城 市的追求越来越迫切, 出现了建 设山水城市、生态城市、绿色城 市、健康城市、家园城市等多种呼 声。其中家园城市最具代表性,这 是□□家园城市涵容了其他几种 城市类型的物质性特点,□□突 出了对以文化为基础的、把城市 打造成人们精神家园的理想追

A.由于 因此

B.由于 才能

C.因为 所以

D.因为 而且

(2011年上海卷) 解题思路:以出题句(空格 所在句子)为切入点,先理清脉 络层次;其次理解句子内涵。该句 由三个分句组成,是一倒装的因 果复句,前一句为果(紧承前句) 后二句为因。后二句中,"涵容 了"和"突出了"相互对应,"物 质特点"到"精神追求"由浅人 深。两分句间是递进关系。原来, "涵容了"前省略了关联词—— "不仅"。于是,答案 D 不言自

由此获得一个启示,完成试 题,首先应要立足"出题句",以 此为本,加以解读,不一定动辄就 整体阅读,"联系本段及乃至全 文"。学生的眼界有时还没有那么宽广,再说,既然眼前能找到突 破口,何必要舍近求远呢?

如果"出题句"中找不到解 题的思路,那么再以该句为"原 点",渐次向上下文扩展,搜寻有 效信息,直到解决问题为止。